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The interplay between excitation and inhibition is crucial for neu-
ronal circuitry in the brain. Inhibitory cell fractions in the neocortex
and hippocampus are typically maintained at 15 to 30%, which is
assumed to be important for stable dynamics. We have studied
systematically the role of precisely controlled excitatory/inhibitory
(E/I) cellular ratios on network activity using mice hippocampal
cultures. Surprisingly, networks with varying E/I ratios maintain
stable bursting dynamics. Interburst intervals remain constant for
most ratios, except in the extremes of 0 to 10% and 90 to 100%
inhibitory cells. Single-cell recordings and modeling suggest that
networks adapt to chronic alterations of E/I compositions by balanc-
ing E/I connectivity. Gradual blockade of inhibition substantiates
the agreement between the model and experiment and defines
its limits. Combining measurements of population and single-cell
activity with theoretical modeling, we provide a clearer picture of
how E/I balance is preserved and where it fails in living neuronal
networks.
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Neuronal circuits in the brain are composed of a combination
of excitatory and inhibitory neurons. While the role of ex-

citatory cells is directly related to the spreading of network activity
in and outside of these networks, the inhibitory neurons provide
recurrent feedback regulation of the activity. Clearly, a circuit will
need the negative feedback realized by the inhibitory population
to function in a complementary and coordinated relation with the
excitatory cells. The balance of these two opposing forces is the
focus of most network models comprised of both neuron types.
However, a definite quantitative resolution of how the excitation/
inhibition (E/I) balance is maintained has not yet been formulated.
The E/I ratio has been shown to control many aspects of the

activity of large-scale neural networks. For instance, experimental
studies show that precise coordination of excitatory and inhibitory
inputs shape the activity of populations of neurons in sensory
cortices (1, 2). At the same time, the interplay of excitation and
inhibition is often proposed as a fundamental mechanism for
generating oscillations in the brain (1). Theoretical work has shown
that changing the overall E/I ratio plays a major role in controlling
dynamic states, stability, and coding capabilities of neuronal net-
works, with the resulting network activity ranging from asynchro-
nous, irregular firing to synchronized network bursting (3, 4).
Inhibition in the cortical areas is implemented by GABAergic

neurons, which comprise about 20 to 30% of all cortical neurons.
This proportion is conserved across mammalian species and during
the lifespan of an animal (5). The importance of keeping a specific
fixed inhibitory percentage has been postulated to be linked to ef-
ficient storage capacity (6) and to multitask learning (7), among
many other functions related to the hippocampus. However, the
importance of having this particular fraction of inhibitory neurons
for the general control of network dynamics remains unclear.
Another well-studied aspect of cortical organization is that exci-

tation and inhibition are balanced both structurally and dynamically.
Dynamically, excitatory, and inhibitory inputs strongly correlate and

synchronize in both spontaneous and evoked activity (2, 8, 9).
Structurally, the ratio of excitatory and inhibitory synapses con-
verging onto one cell is approximately constant (8), but the location
of the synapses determines the efficacy of network firing. Inhibitory
synapses can be located on remote or proximal dendrites, as well as
on the axon initial segment, where they block the ability of the
neuron to discharge action potentials. The role of inhibition is
further complicated by the fact that there are several types of in-
hibitory neurons that can be clustered by their locus of action on the
excitatory neurons as well as the formation of inhibitory synapses on
interneurons (10). For the sake of simplicity, we will not discuss in
the present study the role of different types of interneurons on
network activity.
Perturbations of the E/I ratio that move the network away from

its balance have been reported recently and can be applied both
acutely and chronically. Acute blockade of inhibitory synapses
in vitro by application of pharmacological agents causes the dy-
namics to be excitatory dominated, more uniform, and synchro-
nized (11, 12). Blocking inhibition acutely in vivo has been found
to create epileptic seizures (13). In contrast, chronic blockade
(about 48 h) or overactivation of inhibition causes neuronal net-
works to adjust their activity (8). Changes in the E/I balance have
been linked to different brain states like deep anesthesia (14).
Furthermore, shifts in E/I balance were found to have far-reaching
behavioral effects in freely moving mice (15).
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Given that the conservation of E/I balance is a basic property
of large-scale neuronal networks, it is pertinent to ask what
mechanisms contribute to the creation of this balance and
where their limitations become apparent. E/I balance was ex-
tensively studied in brain areas with 20 to 40% inhibitory cells
(2, 16); however, there is no systematic view of how the in-
hibitory cell fraction and balance are related. To address this,
we have engineered cultures of hippocampal neurons with
precisely controlled numbers of excitatory and inhibitory cells
over a wide range of E/I ratios from 0% inhibitory neurons to
100%. Our design imposes a global and chronic change to
which the network must respond. We have asked whether,
given enough time to adapt and rewire, a neuronal network can
compensate for the perturbation and reach balanced and
stable dynamics.
In the present study, we focus on the ability of neuronal net-

works with artificially obtained E/I ratios to adapt during their
development in vitro by monitoring both the whole network
dynamics and the single cell behavior. In parallel, we employ
finite network models to directly relate the network properties
with the collective dynamics. This enables the emergence of a
unified picture of the accommodation to changing E/I ratios in
the ensemble of active neurons.

Results
Fluorescence-Activated Cell Sorted Cultures Exhibit Collective Dynamics.
When dissociated neurons grow in culture, they evolve into a highly
connected network that generates synchronized bursting activity
separated by quiet periods. This activity emerges during the devel-
opment of a network and is controlled by the architecture of its
excitatory and inhibitory cells (17) and by the balance between
them. To study the role of inhibitory cells in balancing and regu-
lating network dynamics and connectivity, we change the fraction of
inhibitory cells between 0 and 100% while keeping identical seeding
densities (Fig. 1 and SI Appendix, SI Methods) and measure whole
network spontaneous activity by fluorescent imaging. The experi-
ments are done on cultures 14 to 30 d in vitro after the GABA
switch had already occurred (18). This ensures that GABAergic
cells had already acquired their inhibitory behavior. Examples for
single pyramidal and GABAergic neurons observed in our matured
cultures are shown in Fig. 2. We find that the final cellular density,
after growing in vitro, is independent of inhibitory percentage with a
mean ± SD value of 950 ± 130 cells/mm2. We have further verified
that network activity features presented in the result section do not
depend on the density (SI Appendix, Table S2).
All cultures, with varying amounts of inhibitory cells, are

spontaneously active and develop network bursting (Fig. 2A).
For cultures with very high inhibitory percentage (Fig. 2A,

A

B

Fig. 1. Methods for culturing hippocampal networks with different E/I cellular compositions. (A) Hippocampal neurons are dissected from mouse embryos
at day 17 of gestation. Females from mouse model GAD II-IRES-Cre are mated with males from mouse model Ai9-tdTomato-lox, yielding GABAergic cells that
coexpress tdTomato with GAD II. FACS is used to sort tdTomato-expressing cells (GAD+ population, GABAergic cells) from those not expressing (GAD−). GAD+
and GAD− populations are then seeded at different ratios in microfluidic growth chambers on a glial cell layer. (B) Examples for three different cultures with
seeding percentages of 0, 50, and 100% GABAergic cells and corresponding experimentally observed percentages of 4, 49, and 91%. Imaging was performed
on a SP5 Leica confocal microscope with the fluorescent measurement overlaid on a transmitted light image.
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bottom trace), this is an unexpected result since striatal cultures
with ∼95% inhibitory cells are reported not to exhibit syn-
chronized spontaneous bursting (19). Cultures with 0% inhib-
itory cells (Fig. 2A, top trace) have significantly higher burst
amplitudes than cultures with 20 to 100% inhibition, with up to
a 10-fold difference. This effect is similar and even larger than
that produced by acute blockade of inhibition, which typically
causes a two to fivefold increase in amplitude (12).

Effect of E/I Composition on Network Dynamics. Features of bursting
activity are a good indicator for the structure and connectivity of
neuronal networks since they depend on the strength and amount
of neuronal connections, as well as the ability of a network to
recruit, recover, and propagate signals (17). Bursting dynamics of
cultures are characterized by three main parameters: interburst
intervals (IBI), burst amplitudes, and burst durations (SI Appendix,
SI Methods).
IBIs are defined as the time between the initiations of two

consecutive bursts. In Fig. 3 we present the major features of the
spontaneous bursting, averaged over time per culture and then
averaged over a set of cultures for each seeded inhibitory per-
centage. The numbers of cultures included in the analysis are as
follows: n (0%) = 15, n (10%) = 12, n (20%) = 9, n (30%) = 11, n
(50%) = 10, n (70%) = 13, n (80%) = 11, n (100%) = 13, n (25%/
Control with no fluorescence-activated cell sorting [FACS]) = 9,
obtained from between four and eight dissections. The mean of

the IBIs as a function of inhibitory cell percentage follows a U-
shaped trend (Fig. 3A), remaining similar for most E/I ratios, ex-
cept in extreme inhibitory percentages. In cultures with 10 to 80%
inhibitory cells, the mean IBI values range between 10 ± 1 s
(mean ± SEM) to 21 ± 6 s, whereas cultures with 0 and 100%
seeded inhibitory percentages are characterized by significantly
higher IBI values of 65 ± 5 s and 70 ± 19 s, respectively (P < 0.0001,
permutation ANOVA). A small positive trend of the IBIs’ mean is
observed in 10 to 80% inhibitory cultures (P = 0.039). In contrast,
the variability of the IBIs, measured by the coefficient of variation
(CV), grows linearly with inhibitory percentage from 0.29 ± 0.03 to
0.75 ± 0.04 (P = 5.4 × 10−13, Fig. 3B). This suggests that as the
number of inhibitory cells increases, the network proportionally
adjusts itself to maintain stable dynamics, a process that introduces
increasing variability to the system.
Burst amplitudes are an important feature that describe the

bursting dynamics of a developing neuronal network (17), a pro-
cess which correlates with the rate of generated spikes (20). A
small increment of inhibitory neuron percentage, from almost no
inhibition to 10% inhibition (Fig. 3C), leads to a fivefold drop in
burst amplitudes from 1.4 ± 0.1 ΔF/F to 0.25 ± 0.03 ΔF/F (per-
mutation ANOVA, P < 0.001). This behavior has a remarkable
similarity to the effect of inhibition blockade (12). The amplitudes’

A B

C D

Fig. 2. Experiment and model bursting activity, along with neuron images.
(A) Typical calcium imaging traces of the experimental data, displaying the
percent deviation from baseline fluorescence ΔF/F. All cultures are sponta-
neously active, even at high inhibitory percentages. The control cultures
(i.e., no sorting) are set as 25% inhibition. (B) The model simulations of
networks with the inhibitory fractions that are used experimentally. The two
model parameters are the number of inhibitory connections and the ex-
ternal input rate, sampled from the approximated posterior distribution (SI
Appendix, SI Methods). To mimic the slow dynamics of the calcium indicator,
network spike counts are convolved with a 2-s exponential kernel, and a
sigmoid cutoff is applied on the amplitude. The amplitudes are normalized
by the maximum amplitude of the 10% inhibitory network. The model
agrees considerably with the experimental results. (C and D) Green fluo-
rescent protein–transfected neurons (green) on background of tdTomato-
cultured hippocampal neurons (red). A green pyramidal neuron is pre-
sented in C. The yellow (green+red) GABAergic neuron is shown in D; note
that the dendrites of the GABAergic neuron are thin, the cell is multipolar,
and there are no apparent dendritic spines. The green pyramidal cell has
an apparent apical dendrite and many dendritic spines, indicating a gen-
uine excitatory neuron.

A

C

E F

D

B

Fig. 3. Bursting dynamics as a function of E/I composition. (A) IBIs follow a
U-shaped trend as function of inhibitory percentage, with higher values at
the extreme cases (0 and 100%) but are relatively constant in midrange (10
to 80%). (B) The CV of IBIs, a measure of the variability, grows linearly along
the full range of inhibitory percentages. (C) Burst amplitudes drop from 0 to
10% inhibition and continue to decay till 100% inhibition. (D) The CV of
burst amplitude is minimal for 0% inhibition (0.09 ± 0.02). Increasing the
inhibitory percentage to 10% leads to a sharp increase of amplitude vari-
ance, which then gradually decays at higher inhibition fractions. (E) Burst
duration is maximal for 0% inhibition (8.5 ± 0.6 s) and abruptly decreases at
10% inhibition. The duration gradually increases with higher inhibitory
percentage. (F) Durations of 0% inhibitory cultures exhibit a relatively low
CV of 0.15 ± 0.01. Other fractions in the range of 10 to 100% inhibition
display a relatively constant value around 0.45. In all panels, the dashed lines
are meant only as a guide to the eye, the error bars indicate the SEM, and
control (no FACS) is displayed as an empty circle with × inside.
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CV (Fig. 3D) increases almost 10-fold (from 0.09 ± 0.02 to 0.88 ±
0.06) when the inhibitory percentage changes from 0 to 10%. In
0% and 50 to 100% cultures, the amplitudes’ CVs are significantly
smaller compared to control (P = 0.0173, P = 0.0098, P < 0.0001,
and P = 0.0002) and were not significantly different in 10 to
30% cultures.
Burst durations (Fig. 3E) are the largest in 0% inhibitory cul-

tures (8.5 ± 0.6 s), an effect that is comparable to that of blockade
of inhibition, which broadens network bursts in cultured multi-
electrode arrays (11). Burst durations in 0 and 80% cultures are
significantly larger than in control cultures (P < 0.05). We also
observe a positive trend in burst durations between 10 and 100%
of inhibitory neurons (P = 0.001). Burst durations’ CV rises from
0.15 ± 0.01 to 0.46 ± 0.04 between 0 and 10% (P < 0.0001) and
stays approximately constant for 10 to 100% of inhibitory neurons
(Fig. 3F).
Generally, bursting features of cultures with varying E/I ratios

do not change considerably except for the extreme cases of 0 and
100%, and the dynamics are kept stable. Even a small inhibitory
population suffices to effectively produce dynamics that are sim-
ilar to those of control networks. We have verified that changes in
burst amplitudes and in IBI do not originate in corresponding
changes in levels of synchrony, which exhibits some interesting
variation but remains high in all inhibitory percentages (SI Ap-
pendix, Figs. S4 and S5). We proceed and turn to single-neuron
synaptic measurements in order to provide a possible mechanism
for this stability.

The Number of Active Incoming Connections Decreases with Increasing
Fraction of Inhibitory Cells. While the burst dynamics have proven
effective in identifying the robustness of the network behavior
under varying E/I ratios, uncovering the mechanism underlying this
behavior requires single-neuron information. We establish this
using patch-clamp measurements of both excitatory and inhibitory
neurons. As shown in SI Appendix, we are able to clearly distinguish
the excitatory from inhibitory neurons based on their electro-
physiological properties (SI Appendix, Fig. S3).
Most modeling approaches regard the synaptic strength as de-

termined by the size of the mean postsynaptic current (PSC). In
Fig. 4, we present spontaneous PSCs as measured for three rep-
resentative E/I ratios of 20, 50, and 80% inhibitory neurons. We
measure this for 60 to 120 s while the network is between bursts.
The numbers of excitatory cells measured for each fraction are n =
12 for 20%, n = 7 for 50%, and n = 7 for 80%, and the numbers of
inhibitory cells are n = 10 for 20%, n = 12 for 50%, and n = 22 for
80%. Within our experimental errors, there is no statistically sig-
nificant change in the size of PSCs (P = 0.98) for either the ex-
citatory or the inhibitory cells as a function of the E/I ratio, as
shown in Fig. 4 A, Left. Similarly, the decay time of PSCs remains
unchanged for both excitatory and inhibitory neurons (Fig. 4 A,
Middle, P = 0.786).
The size of the PSC is determined by the number of synapses

that connect from a presynaptic cell to the postsynaptic cell, along
with the strength of each synapse. Since the PSC amplitude does
not vary much as compared to the rate, the simplest assumption is
that both synapse number and strength remain unchanged (al-
though in principle, both could change if these changes were
somehow cancelling each other).
A dramatic change is observed in the frequency of PSCs as a

function of E/I ratios, as shown in Fig. 4 A, Right, P = 0.003.
Since the timing between two consecutive PSCs is relatively long,
we can assume that they do not originate from the same action
potential that reaches the terminals. The observed decrease in
PSCs with E/I ratio is linear, and is consistent, within statistical
error, with a direct proportionality to the number of excitatory
cells (Fig. 4 A, Right and the associated Inset). The number of
inputs to both inhibitory and excitatory neurons is thus directly
proportional to the number of excitatory neurons.

In principle, the change in frequency of PSCs may be the result
of a change in the firing rate of the presynaptic cell rather than a
change in the number of incoming connections from neighboring
neurons. To control for this possibility, we record miniature ex-
citatory postsynaptic currents (mEPSCs) in the presence of te-
trodotoxin (TTX) and bicuculline in both GABAergic and non-
GABAergic neurons (Fig. 4 B and C). Since network activity is
blocked under these conditions, any change in frequency will
reflect a change in the number of presynaptic terminals con-
necting to the postsynaptic cell. Indeed, we find changes between
cultures with 20 and 80% GABAergic neurons concurring with
those seen without TTX (Fig. 4C).
This indicates that the number of presynaptic terminals con-

necting to the postsynaptic neuron has changed and suggests that
connectivity, rather than adjustment of synaptic strength, drives
the network response.
We also observe a strong difference in the PSC frequency of

inhibitory versus excitatory neurons by about a factor of 7 (P =
8.56 × 10−11). This was seen both with and without TTX (Fig. 4 A

A

B

C

D E

Fig. 4. Patch-clamp measurement. Single-cell changes (mean ± SEM) in
response to varying the network inhibitory percentages is presented for
inhibitory (red) and excitatory (blue) neurons. (A) While the size (Left) and
decay time (Middle) of spontaneous PSCs do not change with inhibition, a
significant decrease occurs in the PSC rate (Right, logarithmic scale). (Inset)
Normalizing PSC rates by the value at 20% inhibition highlights the sub-
stantial (and similar) decrease for both excitatory and inhibitory cells.
Moreover, the linear fit to the decrease (dashed line, 95% CI-red area) shows
the rate to be directly proportional to the number of excitatory cells. (B)
Sample mEPSCs (Left), recorded in 0.5 μM TTX and 10 μM bicuculline, from a
red (inhibitory) cell in a 20% inhibitory culture (zoom-in, Right). (C) mEPSC
size (Left) and decay time (Middle) also do not change with inhibition.
However, the rate does change significantly, showing lower values at higher
inhibition percentage (Right). (D) Image of a field containing red (CRE-GAD-
tdTomato) and green (CRE-OFF-YFP) neurons. (E) Within the same culture,
mEPSC size (Left) and rate (Middle) are significantly higher in inhibitory (I)
versus excitatory (E) neurons, while the decay time (Right) is similar. See SI
Appendix, SI Methods for the statistical analysis.
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and C, respectively). To ensure that the actual fluorescence itself
does not change the properties of neurons, we conduct experi-
ments where we compare tdTomato CRE-GAD neurons with
YFP CRE-OFF (virally)–stained neurons (Fig. 4D). These ex-
periments show that the fluorescence of the cells in our system
does not determine their behavior (Fig. 4E), maintaining the
same mEPSC properties with and without viral transfection
(Fig. 4 C and E).

A Network of Adaptive Leaky Integrate-and-Fire Neurons Can Reproduce
the Main Features of the Dynamics. To relate dynamics with network
properties, we have constructed a minimal interpretable network
model that exhibits a bursting behavior. As shown in Fig. 5A, the
network is composed of excitatory and inhibitory leaky integrate-
and-fire (LIF) neurons with spike-triggered adaptation. Each
neuron receives KE excitatory and KI inhibitory connections with
synaptic strengths gJ and J, respectively, where g is a proportion-
ality constant. The synaptic strength approximates the “functional
synapse” with multiple axon collaterals. For this approximate
model, the number of input connections at a given E/I ratio is the
same (i.e., KE + KI) as the excitatory (blue) and inhibitory (red)
neurons (Fig. 5A). All neurons, both inhibitory and excitatory, are
additionally driven by an external Poisson input that models various
sources of spontaneous activations of single neurons (SI Appendix,
SI Methods). Assigning the same number of input connections (KE

and KI) to both types of neurons is a simplification that disregards
the experimentally observed sevenfold difference in PSC frequen-
cies between excitatory and inhibitory neurons at the E/I ratios we
have measured. We justify this simplification by the fact that this
difference does not depend on the inhibitory fraction, expanding
the model to precisely matched topologies remains a question for
the follow-up studies. The model exhibits diverse network bursting
that can be controlled by the synaptic strength, network connectivity,
rate of external inputs, and the strength of adaptation (21, 22). Note

that the model is limited to reconstruct only the bursting dynamics
on the level of spiking activity and does not fit the voltages of in-
dividual neurons during bursting (SI Appendix, Fig. S8).
Since the PSC amplitudes did not vary significantly across

cultures with different fractions of inhibitory neurons, we fix the
inhibitory and excitatory synaptic strength and do not explore its
effects of on the bursting dynamics. The frequency of PSCs (and
mEPSCs) in experiments decreases with the inhibitory percent-
age, suggesting a decreasing number of connections per neuron.
Accordingly, we assume that the number of excitatory connec-
tions per neuron is proportional to the number of excitatory
neurons.
Our simulations confirm that the model can qualitatively fit

the neuronal dynamics of cultured neurons (Fig. 2B). Here, we
aim at a quantitative fit that will allow to interpret differences and
similarities between the cultures with different E/I ratios. As de-
scribed in SI Appendix, Table S3, most of the parameters of the
model are fixed and constrained to lie within the corresponding
intervals determined by experiments (ours and in those found in
the literature). To avoid overfitting, we fit only the number of in-
hibitory connections per neuron and the properties of the external
drive using Approximate Bayesian Computation (ABC) (23). All
other single neuron and network parameters are kept constant. We
separately fit networks with E/I ratios corresponding to the various
seeded fractions of inhibitory neurons. For extreme 0 and 100%
inhibitory networks, we assume 5 and 92% of inhibitory neurons.
ABC allows us to approximately solve Bayesian inference problems
by minimizing a distance function and returning a joint distribution
of the number of inhibitory connections per neurons and external
input rate, called posterior distribution. We define the distance
function between the model data and the recordings as the mean
squared error (MSE) between the vectors of normalized means
and CVs of the IBIs. Parameters sampled from this distribution
result in a model with dynamics that are similar to bursting in vitro.

A B E

F

DC

Fig. 5. Network model with adaptive LIF neurons reproduces the main burst features. (A) A schematic of the model (see text for details). (B and C) IBIs (B) and
CV (C) in the model with adaptation (red) and without (gray). The experimental data is shown in blue (error bars, SEM). For the model with adaptation, points
(red) show the IBIs in the model with the most probable parameters of an approximated posterior distribution and individual samples are shown in pale red.
The model without adaptation cannot reproduce the observed CV, while with adaptation it does. (D) Burst amplitudes in cultures (blue) and in the model
with adaptation (red, like B), normalized by the mean amplitude of the bursts in the 10% inhibitory network. (E and F) Posterior distributions of the number
of inhibitory connections P(KI) obtained by ABC. In F, the x-axis is shifted such that zero (KI = KE/g) is at balance. The blue regions indicate a part of the
parameter space with more excitatory connections than at balance, and red indicates those with more inhibitory connections. They gray shadows show the
distributions that would be obtained if the number of inhibitory connections is proportional to the number of inhibitory neurons, taking 20% inhibitory
neurons as a reference.
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After fitting, the network model matches extremely well with
the corresponding features of bursting in cultured networks with
different inhibitory percentages (Figs. 2B and 5 B–D). With just
two individually adjusted parameters, our network accurately fits
the important features of the recordings, including nearly constant
mean IBIs in networks with 10 to 80% inhibitory percentages and
an increase of the mean IBI in networks with extreme inhibitory
fractions (Fig. 5B). The model also reproduces the linear increase
of the CV of IBIs as a function of inhibitory percentage (Fig. 5C).
Surprisingly, the burst amplitudes that are not included in the
minimized distance function also match the experimental data
(Fig. 5D)
We analyze the posterior distribution of inhibitory connections

that leads to good approximations of the bursting features
(Fig. 5 E and F). In networks with 10 to 100% inhibitory neurons,
the maximum a posteriori estimate of the inhibitory connections is
proportional to the number of excitatory connections. In this way,
excitatory and inhibitory connections can balance each other in
comparison to the naively expected distribution, where the num-
ber of connections is proportional to the number of inhibitory
neurons (Fig. 5F, gray lines). The posterior distribution of inhib-
itory connections in networks with 0% inhibitory neurons shifts
toward the excitation-dominated region (Fig. 5F, blue region).
We attempt to reduce the complexity of the model by removing

the spike-triggered adaptation. A network of LIF neurons without
adaptation can exhibit noise-induced population bursts that re-
capitulate some of the features of bursting in vitro. However, the
CV of IBIs in the model without adaptation always stays close to
unity, reflecting an exponential distribution of the IBIs (Fig. 5 B
and C, gray). Thus, this model fails to capture even basic features
of the population bursts in experiments.

Interaction of the E/I Balance and Adaptation.The LIF network with
spike-triggered adaptation allows us to effectively describe the
network bursting as bistable dynamics driven by the interaction
of excitation, inhibition, and adaptation (21, 22). The adaptation
current in our model sets the slowest timescale of the IBIs. The
inhibitory connectivity can practically be modified in the model

by varying the relative strength of inhibitory synapses, g. When
the network does not have inhibition, each burst is terminated
only by strong adaptation that counteracts excitation. After that,
the adaptation current decays exponentially, and the probability
of initiating the next burst gradually increases. Correspondingly,
in this regime of activity, the variability of IBIs is small. Adding
inhibition to the network allows for shorter IBIs. In this case,
both inhibition and adaptation counteract excitation to stop the
burst. This results in a much smaller adaptation current at the
point of burst termination, increasing the probability of starting
the next burst earlier. If the firing rate within the burst is high,
the following IBI should be large, allowing the adaptation cur-
rent to reach sufficiently low values. Altogether, this should re-
sult in positive correlations between the burst amplitude and
following IBI, which we indeed observe in the experimental data
(SI Appendix, Fig. S10).
To formalize this idea, we analyze the bursting dynamics, as-

suming that the spike-triggered adaptation timescale is much slower
than the membrane timescale (SI Appendix, Table S4). We estimate
the stationary firing rate at different fixed levels of adaptation using
the current-to-rate transfer function of the white noise–driven LIF
neuron and mean-field approximations of the synaptic input (3).
As shown in Fig. 6A, bursts start by bifurcating from a low firing

state to the bistable firing regime (squares; left arrows); at this
stage, adaptation increases proportionally to the firing rate (upper
arrows). This drives the system to eventually transit to the low
firing rate state, terminating the burst (circles; right arrows). After
that, the adaptation slowly decreases until a new burst can start
(bottom arrows). Black lines show stationary firing rates of the
network with 20% inhibitory neurons, solved for different adap-
tation values (solid lines, stable fixed points; dashed lines, unstable
fixed points) for two different inhibitory strengths (g = 4, balance
condition; g = 3.6, excitation-dominated condition). Pale lines
show example trajectories of individual bursts from the network
simulation (pink, balanced network; blue, excitation dominated).
Larger values of the adaptation at the end of the burst lead to
longer IBIs (g = 4 versus g = 3.6). The trajectory of network
simulations at the end of the burst do not cross the analytically

A B C

Fig. 6. Blocking of inhibitory synapses reveals the bursting mechanisms. (A) Trajectories in a phase space defined by the population firing rate and spike-
frequency adaptation for inhibitory strengths g = 3.6 and g = 4.0 (solid black lines, stable solutions; dashed lines, unstable solutions). At g = 4, the network is
in the balance condition; at g = 3.6, it is in the excitation-dominated condition. The pale lines show examples of individual burst trajectories (pink, balanced
network; blue, excitation dominated). Larger values of the adaptation at the burst end lead to longer IBIs. (Inset) The size of the bistable region increases with
decreasing inhibitory strength. The squares and circles indicate the average adaptation at the beginning and end of simulated bursts. Decreasing the in-
hibitory strength leads to higher burst amplitudes and longer IBIs. (B) In networks with 20 to 80% of inhibitory neurons, the increase in bicuculline con-
centration (logarithmic scale) results in longer IBIs—that is, within experimental error, similar to the control cultures. The model (lines) reproduces the
experimental results (dots). In contrast, no adaptation model (gray) decreases the IBIs and transitions to a nonbursting dynamic. The IBIs are normalized by the
mean at 0 μM bicuculline. (C) Bicuculline application to networks with extreme inhibitory percentages and the corresponding responses of the model.
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computed bifurcations (circles) because of inertial effects in sto-
chastic bifurcations (black versus pale blue and pink lines). The
inset to Fig. 6A shows that the size of the bistable region increases
with decreasing strength of inhibitory synapses.
We thus identify three types of solutions: a fixed point at high

firing rate with small adaptation current, a low firing rate fixed
point for large adaptation, and a bistable firing rate for interme-
diate adaptation (Fig. 6 A, Inset; colored areas, small high firing
rate regions near x-axis [H], bistable firing [LIH], and low firing
[L]). Levels of adaptation at the beginning and end of a burst in the
network simulation approximately correspond to analytically
computed bifurcations (Fig. 6A). Decreasing the strength of in-
hibitory synapses gradually increases the size of the bistable region,
which corresponds to an increase of the adaptation current at the
end of the burst (Fig. 6 A, Inset) and leads to longer IBIs and to
larger burst amplitudes.

Inhibition Blockade Probes the Limits of Agreement between Experiment
and Model.Our finding, so far, is that networks with all but extreme
fractions of inhibitory neurons adapt during development and be-
have similarly to control cultures. To test what further changes
occur under an acute change of synaptic strength, we block inhibi-
tory connections using the synaptic inhibitory blocker, bicuculline
(Fig. 6B). All cultures, with different E/I ratios, show a gradual
increase of the mean IBI values as a function of inhibitory receptors
blockade. The change of IBI in 20 to 80% cultures with saturating
amounts of bicuculline ([bicuculline] = 40 μM) is between 3.7 ± 0.8
and 5.6 ± 0.3, and they behave approximately like control cultures
(Fig. 6B).
Cultures with almost no inhibition are only slightly sensitive to

inhibition blockade in comparison to control (Fig. 6C) and show
an increase of 1.8 ± 0.1 in IBI values (P = 0.0181), whereas cul-
tures that are mainly inhibitory are highly sensitive to bicuculline
(11 ± 6 times increase of IBIs already at [bicuculline] = 3 μM) and
show a high variability of responses. Some of the 10% inhibitory
cultures exhibit a unique behavior, with a sharp increase in IBI
values ranging between 7 to 16 times at [bicuculline] = 40 μM.
To repeat these experiments in silico, we gradually decrease

the strength of inhibitory connections in models fitted to the
experimental data without application of bicuculline. We ap-
proximate the decrease of the inhibitory strength by the fraction

of inhibitory receptors blocked 1=(1 + [bicuculline]
Kd

), where Kd =

3 μM (20). Networks with adaptation respond by increasing the
mean IBI, closely matching the experimental results (Fig. 6 B
and C, note that we did not refit the networks to match the
bicuculline responses). In contrast, the networks without adap-
tation decrease the mean IBIs (Fig. 6B, gray).
Next, we quantify how deviations from balance affect the re-

sponse of the model network to bicuculline, where deviation
0 means that the excitatory and inhibitory connections are at
balance: JKE = gJKI. To this end, we investigate the set of net-
works parametrized by the deviation from balance. We measure
the MSE between the bicuculline responses recorded in vitro and
the responses of networks. In 20 to 80% networks, the best
matching responses came from the models with nearly balanced
E/I connections (SI Appendix, Fig. S9).
For extreme values of the E/I ratio, the network shows most

interesting behavior, and from 10% inhibition and below, a
transition occurs where IBIs show an increase. According to the
model, this indicates that the network begins to fail in attaining
structural E/I balance at 10%. In 0 and 10%, the best parameters
are found to be in the excitation-dominated region and in the
inhibition-dominated region, respectively. At the other extreme
of 100% inhibitory neurons, the responses are highly variable,
deviate significantly from the model, and cannot be predicted by
it. The network model with 100% inhibitory neurons fails to

show a response to bicuculline with the magnitude observed
in vitro (Fig. 6C). Altogether, for all but extreme fractions, the
networks faithfully reproduce the responses to all intermediate
bicuculline concentrations, with the best matching parameters
either at the maximum a posteriori estimate or situated slightly
closer to the balance point.

Discussion
E/I balance is a state attractor of neuronal networks. Our first
and main finding is that a living neuronal network will flow to-
ward a state attractor characterized by an E/I balance. This
tendency for network behavior occurs for a wide variety of cel-
lular E/I fractions, ranging from ∼10 to 80% of inhibitory neu-
rons, where the networks adapt and develop stable, spontaneous
network activity. The main mechanism that we identify for this
stability is the maintenance of balanced E/I connectivity.
The theoretical role of E/I balance in network dynamics and

function has been discussed in earlier works (24). The flow toward
an attractor with balanced dynamics was previously observed to be
the typical response of cultured neuronal networks after a pro-
longed perturbation (25). Also, many experimental results dis-
played a dynamic E/I balance in a wide range of neuronal circuits,
including the neocortex, hippocampus, and spinal cord (1, 2, 8, 16).
Furthermore, several studies found that the dynamic balance of
excitatory and inhibitory currents relies on balanced E/I connec-
tivity (8, 9). Most of the networks that have balanced E/I dynamics
also have a tightly preserved ratio of excitatory and inhibitory
neurons (5).
Our results are in agreement with earlier studies on the devel-

opment of single-cell input connectivity (8). Liu (8) reported that
the ratio of E/I connections on a dendrite of a single neuron is fixed
and that E/I currents balance each other already at the single-
dendrite level. They also proposed that the balance is controlled
by a compensatory push–pull mechanism that is established by
chronically blocking and activating excitatory and inhibitory recep-
tors. Our study indicates that cultured networks tend to maintain
the balanced E/I connectivity even under the challenge of extreme
and long-term changes of cellular composition.
Structural E/I balance may be regulated by changes in connec-

tivity. We have seen that the control over structural E/I balance in
the dissociated hippocampal cultures is achieved by pruning the
number of connections in networks that have an increased number
of inhibitory cells. The frequency of both PSCs and mEPSCs de-
creases with inhibitory percentage; however, their size does not,
suggesting that the number of connections decreases in pro-
portionality to the E/I ratio.
The frequency of PSCs is most probably dominated by excit-

atory inputs, and therefore we assume that it decreases in a direct
proportion to the number of excitatory cells. Thus, the network
model is constructed under the assumption that the number of
excitatory inputs decreases linearly with the fraction of excitatory
neurons. The fitted model suggests that the number of inhibitory
connections dramatically changes in order to maintain balanced
E/I connectivity and to compensate for the perturbation of the
cellular composition.
These differences underlie practically all of the changes in

spontaneous network activity that we observe. For instance, a dra-
matic decrease in the number of connections in the network that
contains almost only inhibitory neurons leads to the prolongation of
IBIs. We have explored this result by building a network model
under the assumption that the number of connections decreases in
networks with a higher fraction of inhibitory neurons while the ratio
of excitatory and inhibitory connections remains fixed. Although we
use a very simplified single-neuron model, we could fit the temporal
aspects of the bursting dynamics extremely well.
Our results complement earlier studies of systematic manip-

ulation of the network structure (9, 26, 27). Wilson et al. (26)
studied the effects of the network size on the connectivity and
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dynamics. They show that the firing rates of neurons were pre-
served across networks of different sizes even though the number
of neurons and synapses increased. The result was due to the fact
that the number of excitatory inputs was compensated by syn-
aptic strength. Interestingly, they showed that amplitudes of
mEPSCs are larger in the smaller cultures while, in our case, we
do not see substantial differences in mEPSC amplitudes. What is
most striking in our networks is changes in mEPSC frequencies,
which does not change in their networks. Ivenshitz & Segal (27)
showed how changing the density of hippocampal cultures affects
the spontaneous activity and linked these changes to the differ-
ences in synaptic organization. In their study, the average duration
of IBIs, as well as the burst amplitudes, increases in sparser net-
works. This change is governed by an increase in the amplitudes of
the PSCs along with a decrease in the number of connections,
which is opposite to the synaptic changes that we have found.
Barral and Reyes (9) extended this result to cortical cultures of

various densities. They showed that the synaptic strength changes as
the inverse of the square root of the number of connections while
preserving the balance between incoming excitatory and inhibitory
connections as predicted by theory (24). In contrast, our results
indicate that long-term changes in the cellular E/I ratio radically
change the input connectivity rather than the synaptic strength.
Inhibition controls variability. We have found that, while the

number of inhibitory neurons does not affect the average spon-
taneous activity in the cultured network, it strongly affects its
variability ( i.e., the higher order statistics of the bursts). The CV
of IBIs grows linearly with the number of inhibitory neurons in the
culture. Thus, networks with the highest numbers of inhibitory
cells and only a small fraction of excitatory cells have the highest
CV, which approaches unity. The bursting dynamics in these
networks thus resemble a Poisson process. This is possibly a
consequence of a smaller number of connections in networks with
high numbers of inhibitory neurons, which decorrelates the input
into neurons and randomizes bursting events (28). This could
obviously have an impact on the reliability of neuronal circuitry.
Inhibition can also directly influence the bursting variability, as

indicated by several theoretical and experimental studies (4, 29).
An increase in the inhibitory synaptic strength or number of
connections makes inputs less synchronized, which consequently
decreases the burst amplitude and increases the variability of IBIs.

Conclusion
In summary, we present a system where the impact of the cellular
E/I composition on neuronal network organization and dynamics
can be quantitatively evaluated. Cultured neuronal networks ex-
hibit stable and balanced dynamics within a wide range of exter-
nally imposed initial cellular E/I ratio. We present evidence
supporting the idea that adjustment of the number of input con-
nections to each neuron in the network is the dominant mechanism
for maintaining the E/I balance. We explain the collective dynamics
of cultured neuronal networks with varying E/I ratios using a

minimal theoretical model. The observed dynamics are described
in terms of an interaction between inhibition and adaptation. The
model reliably reproduces the experimental observations when
inhibitory and excitatory connections are balanced.
Inhibition is a basic component of neuronal networks, and our

understanding of its role in network dynamics and function is
constantly being extended. Early studies suggested that inhibi-
tion is a simple negative feedback mechanism to avoid runaway
excitation (13). Further studies established the crucial role of
inhibition in the dynamical repertoire (3), response properties,
and coding capacity (24, 30). More recently, Mongillo et al. (31)
theoretically showed that inhibitory connectivity increases the
memory storage capacity. Our experimental platform allows us
to precisely control the E/I network architecture and opens
possibilities for detailed studies of E/I circuitry.
Overall, these findings signify that, when an externally im-

posed alteration of the E/I ratio is given in an early stage of
development, the system adapts and overcomes it to maintain
stable and balanced dynamics. Since the network we engineer is
randomly connected and its architecture is very different from
that of networks in the brain, our finding that bursts are robustly
controlled must be translated into a relevant conclusion for brain
circuits. This promises to be a future challenge.

Materials and Methods
Labeled dissociated neurons from amouse hippocampus are sortedwith FACS
to manipulate the number of excitatory and inhibitory cells. Whole-network
spontaneous activity is recorded with a Fluo-4 calcium indicator. PSC and
mPSC are recorded using the patch-clamp method across networks with
different E/I ratios. The network of excitatory and inhibitory LIF neurons is
fitted to the experimental data using ABC. We fit the number of inhibitory
connections and the external input rate while keeping the other parameters
constant at the physiologically realistic values. Please refer to SI Appendix, SI
Methods for the detailed description and further information about the
data analysis and statistics.

Data Availability.Alldataandcodesused fordataanalysis andnetwork simulations
will be available upon publication. Code, calcium imaging network traces, and
single-cell patch-clamp measurements data have been deposited in Figshare, fig-
share.com (https://figshare.com/projects/Neuronal_circuits_overcome_imbalance_
in_excitation_and_inhibition_by_adjusting_connection_numbers/88586). The code
for network simulations is also available at GitHub, https://github.com/LevinaLab/
PNAS-2021.
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